Ref No:

SKIT, BANGALORE

COURSE PLAN

Academic Year 2019-20

Program:	B E – Information Science & Engineering
Semester :	7
Course Code:	15CS744
Course Title:	UNIX SYSTEM PROGRAMMING
Credit / L-T-P:	3 / 3-0-0
Total Contact Hours:	40
Course Plan Author:	Veena M. Naik

Academic Evaluation and Monitoring Cell

No. 29, Chimney hills, Hesaraghatta Road, Chikkabanavara BANGALORE-5600990, KARNATAKA , INDIA Phone / Fax :+91-08023721315/23721477 www.skit.org.in

Table of Contents

UNIX SYSTEM PROGRAMMING	1
A. COURSE INFORMATION	
1. Course Overview	
2. Course Content	
3. Course Material	
4. Course Prerequisites	4
5. Content for Placement, Profession, HE and GATE	5
B. OBE PARAMETERS	
1. Course Outcomes	5
2. Course Applications	6
3. Mapping And Justification	6
4. Articulation Matrix	7
5. Curricular Gap and Content	8
6. Content Beyond Syllabus	8
C. COURSE ASSESSMENT	9
1. Course Coverage	9
2. Continuous Internal Assessment (CIA)	9
D1. TEACHING PLAN - 1	9
Module - 1	9
Introduction	9
Module – 2	
E1. CIA EXAM – 1	11
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	
Module – 3	
Module – 4	
E2. CIA EXAM – 2	
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	B.E	Program:	IS
Semester :	VII	Academic Year:	2019-20
Course Title:	UNIX SYSTEM PROGRAMMING	Course Code:	15CS744
Credit / L-T-P:	3/3-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	40	SEE Marks:	80 Marks
CIA Marks:	20	Assignment	1 / Module
Course Plan Author:	Veena M Naik	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target : 75%	SEE Target:	80%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content \checkmark Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teachi	Identified Module	Blooms
ule		ng	Concepts	Learning
		Hours		Levels
1	The ANSI C Standard, The ANSI/ISO C++ Standards, Difference between ANSI C and C++,The POSIX Standards,The POSIX.1 FIPS Standard, The X/Open Standards.	05	POSIX standards	L3
	UNIX and POSIX APIs:The POSIX APIs, The UNIX and POSIX Development Environment, API Common Characteristics.	03	API characteristics	L2
2	File Types, The UNIX and POSIX File System,UNIX and POSIX File Attributes, Inodes in UNIX System V, Application Program Interface to Files, UNIX Kernel Support for Files.Relationship of C Stream Pointers and File Descriptors, Directory Files, Hard and Symbolic Links.	04	Kernel support for files	L2
	General File APIs, File and Record Locking, Directory File APIs, Device File APIs, FIFO File APIs, Symbolic Link File APIs.	04	API for file	L3
3	Introduction, main function, Process Termination,Command- Line Arguments,Environment List, Memory Layout of a C Program, Shared Libraries, Memory Allocation, Environment Variables, setjmp and longjmp Functions, getrlimit, setrlimit Functions.UNIX Kernel Support for Processes.Process Identifiers, fork, vfork, exit, wait, waitpid, wait3, wait4 Functions, Race Conditions, exec Functions, Changing User IDs and GroupProcess Accounting, User Identification,Process Times, I/O Redirection.	05	Process management	L4
	Introduction, Terminal Logins, Network Logins, Process Groups, Sessions, Controlling Terminal, tcgetpgrp and tcsetpgrp Functions, Job Control, Shell Execution of Programs, Orphaned Process Groups.	03	Process relationship	L4
4	Introduction, Daemon Characteristics, Coding Rules,error Logging, Client-Server Model.The UNIX Kernel Support for signal, Signal Mask, sigaction, The SIGCHLD Signal and the waitpid Function,The sigsetjmp and siglongjmp Functions, Kill, Alarm, Interval Timers, POSIX.IbTimers.	05	Signal handling techniques	L3
	Daemon Characteristics, Coding Rules,error Logging, Client- Server Model.	03	Daemon characteristics	L3
5	Overview of IPC Methods, Pipes, popen, pclose Functions, Co processes ,FIFOs, System V IPC, Message Queues, Semaphores. Shared Memory	04	IPC mechanisms	L4
	Client-Server Properties, Stream Pipes, Passing File	04	Client server	L3

Descriptors,	An	Open	Server-Version	1,	Client-Server	communication	
Connection Functions.							

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Modul	Details	Chapters	Availability
es		IN DOOK	
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1,2,4,5	1) Unix System Programming Using C++ - Terrence Chan, PHI, 1999.	1,2,3,4,5,	In Dept/ in
		0,/,8,9,1	library
	2) Advanced Programming in the LINIX Environment - \V/ Dichard	15 16 17	In Dont / in
3	Stevens Stephen A Rado and Edition Pearson Education / PHI 2005	15,10,17	library
в	Reference books (Title, Austhors, Edition, Publisher, Year.)	-	-
1.2.3.4.	1. Advanced Unix Programming- Marc J. Rochkind, 2nd Edition. Pearson	-	In Lib
5	Education. 2005.		
1,2,3,4,	2. The Design of the UNIX Operating System - Maurice.J.Bach, Pearson	-	Not Available
5	Education / PHI, 1987.		
1,2,3,4,	3. Unix Internals - Uresh Vahalia, Pearson Education, 2001.	-	In lib
5			
1,2,3,4,	4. Roberto Tamassia, Michael H Goldwasser, Michael T Goodrich, "Data	-	In lib
5	Structures and Algorithms in Python ,1 st Edition, Wiley India PVt Ltd,		
	2010. ISBN-13. 970- 0120502170		
С	Example programs links		
	http://vtuac.in/library/cse/sem7/15cs744/		
	https://www.vturesource.com/vtu-question-papers/CS/		
	2010/10CS62/Unix-System-Programming		
	https://www.guru99.com/must-know-linux-commands.html		
	http://cms.gat.ac.in/course/info.php?id=584		
D	Software Tools for implementation	-	-
	UNIX Operating System		
E	Recent Developments for Research	-	-
	System programming in UNIX/LINUX		
F	Others (Web Video Simulation Netes ato)		
	bttps://www.voutube.com/watch?v-21bS6cl.Hi-LL		
	https://www.youtube.com/watch?v=31D30CUTJ=0		_
	Intps///www.youtube.com/watch:v=KOKF10QQU4C	-	-
L	1		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content ...

Mod	Course	Course Name	Topic	/ Descrip	otion	Sem	Remarks	Blooms
ules	Code							Level
1	15cs64	Operating	1/operating	system	concepts	6	Studied in lower	L2
		system	/Knowledge	of	concepts		semester	

		operating system	
2	15cs35	Unix and shell1/ UNIX architecture/Knowledge 3 Studied in lower programming of architecture of UNIX operating system	L2
3	15cs35	Unix and shell programming2&3/Unixcommands/knowledge commands3Studied in lower semester	L3

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Moc	I T	Topic / Description	Area		Remarks			Blooms	
ules									Level
2	File locks		placement	Need	to	conduct	seminar	to	L3
				discuss this topic					
5	Sockets		placement	Need	to	conduct	seminar	to	L3
				discus	s thi	s topic			

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessme	Blooms'
ules	Code.#	At the end of the course, student	Hours		Method	nt	Level
		should be able to				Method	
1	15CS744.1	Use runtime & compile time limits	05	POSIX	Demons	Student	L3
		in UNIX platform		standards	trate	presentati	Apply
					program	on of	
					S	programs	
1	15CS744.2	Understand API characteristics	03	API	Reading,	Student	L2
		using POSIX standard		characteris	discussi	presentati	Understand
				tics	on	on	
						Question	
						&	
						answers	
2	15CS744.3	Understand file structure in UNIX	04	Kernel	Presenta	Question	L2
		operating system.		support for	tion	and	Understand
				files		answers	
						assignme	
						nt	
2	15CS744.4	Apply file manipulation system	04	API for file	Demons	Student	L3
		calls for different types of files.			trate	presentati	Apply
					program	on	
					S		
3	15CS744.5	Analyze process control primitives	05	Process	Demons	Student	L4
		for different applications in		manageme	trate	presentati	Analyze
		multiuser environment		nt	program	on of	
					S	programs	
3	15CS744.6	Identify relationship between	03	Process	Demons		L4
		group of processes for job control		relationshi	trate	assignme	Analyze
				р	program	nt	
					S	unit test	
4	15CS744.7	Apply interrupt methods for	05	Signal	Demons	Seminar	L3
		handling asynchronous events		handling	trate	assignme	Apply
				techniques	program	nts	

					S		
4	15CS744.8	Understand daemon characteristics for coding rules	03	Daemon characteris	Reading, discussi	Question &	L3 Apply
						unit test	
5	15CS744.9	Distinguish message queues semaphores & shared memory across machine boundaries	04	IPC mechanis ms	Demons trate program s in lab	Student presentati on of programs in groups	L4 Analyze
5	15CS744.10	Discover communication between client server using pipes & sockets	04	Client server communic ation	Lecture / Demons trate program s	Student presentati on seminars viva	L3 Apply
	15CS744	Total	40	-	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to . .

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Implementation of programs to check limits in UNIX operating system	CO1	L3
1	Use of POSIX in Real-time Systems, Assessing its Effectiveness and Performance	CO2	L2
2	Organization of file in the file system of operating system	CO3	L2
2	Applying of read and write lock on files.	CO4	L3
3	Create, resume,suspend & kill the process in multitasking environment.	CO5	L4
3	Switching among multiple jobs in multiuser & multitasking environment.	CO6	L4
4	Communication between program and operating system	CO7	L3
4	Operating system bootstrapping	CO8	L3
5	Client server communication in distributed computing	CO9	L4
5	Remote procedure calls,web,mail severs.	CO10	L3

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Mod	Мар	ping	Mapping	Justification for each CO-PO pair	Lev				
ules			Level		el				
-	СО	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-				
1	CO1	PO1	L3	Knowledge of POSIX limits is required to implement programs	L3				
		PO2	L3	Analyze programs in UNIX operating system using compile time & run time limits	L3				
	PO3 L3		L3	Design new program using the knowledge of compile time & run time limits	L3				
	P012 L3		L3	arning in the context of technology changes in UNIX versions					
	CO2 PO1 L2		L2	Knowledge of API characteristics is required to implement different system calls	L2				
		PO2	L2	Analyze the different system calls using the knowledge of API characteristics	L2				
		PO12	L2	Learning in the context of technology changes in UNIX versions	L2				
2	CO3	PO1	L2	The knowledge of Unix file types are used to solve complex engineering problems.	L2				
	PO12 L2		L2	L2 Life long learning is required to explore new UNIX tools					
	CO4 PO1 L3		L3	The knowledge of Unix file APIs are used to solve complex engineering problems.	L3				

		PO2	L3	Analyze programs written using different file API's	L3
		PO3	L3	Design new programs using the knowledge of file API's	L3
		PO12	L3	Life long learning is required to explore new UNIX tools	L3
3	CO5	PO1	 L4	knowledge of APIs for Processes control is applied to solve complex	L4
0				engineering problems.	.
		PO2	L4	Analyze programs written for multiuser operating system	L4
		PO3	L4	Design different programs using the knowledge of process API's	L4
		PO4	L4	Investigate & interpretation of new programs can do done using process	
				system calls	.
		PO12	L4	Learning in the context of technology changes in UNIX versions	L4
	C06	PO1	L4	Knowledge of process relationship is required to implement job control	L4
				feature in multiuser environment	
		PO2	L4	Analyze the relationship between parent & child process	L4
		PO3	L4	Design programs which shows the relationship between parent & child	L4
				process	
		PO4	L4	Investigate different programs written to handle job control feature	L4
		PO12	L4	Learning in the context of technology changes in UNIX versions	L4
4	CO7	PO1	L3	Knowledge of interrupt & signals is required to perform interrupt	L3
				handling	
		PO2	L3	In order to identify, formulate and analyse engineering problems	L3
				students make use of knowledge of signal and daemon Process	
				functions.	
		PO3	L3	Design programs to handle synchronous & asynchronous events	L3
		PO12	L3	Learning in the context of technology changes in UNIX versions	L3
	C08	PO1	L3	The knowledge of the given specifications of daemon Process functions	L3
				to demonstrate signal handling are analyzed are examined to solve	
				complex engineering problems	
		PO2	L3	Analyze different daemon coding rules	L3
		PO3	L3	Design different programs using daemon coding rules	L3
		PO12	L3	Learning in the context of technology changes in UNIX versions	L3
5	CO9	PO1	L4	Knowledge of inter process communication is required to implement	L4
				communication across different system	<u> </u>
		PO2	L4	Design programs using different IPC mechanisms	L4
		DOn	14	In order to design solutions for complex angineering problems and	
		FU3	L4	design system components or processes for open ended engineering	L4
				problems considering health and safety risks students can make use of	
				Inter process communication using IPC Methods	
		POA	14	Investigation of inter process communication among different system	11
		104	L4	The knowledge of Inter process communication using IPC Methods are	
				used to provide valid conclusions.	
		PO12	L4	Learning in the context of technology changes in UNIX versions	L4
	CO10	PO1	L3	Knowledge of pipes & sockets is required to implement client server	L3
				communication	
		PO2	L3	Analyze different client server communication	L3
		PO ₃	L3	Design client server communication using IPC system calls	L3
		PO12	L3	Learning in the context of technology changes in UNIX versions	L3

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

											<u> </u>							
-	-	Course Outcomes	Program Outcomes												-			
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	03	el
1	15CS744.1	Use runtime & compile time	2.4	2.4	2	-	-	-	-	-	-	-	-	2.4	-	-	-	L3
		limits in UNIX platform																
1	15CS744.2	Understand API characteristics	2.4	2.4		-	-	-	-	-	-	-	-	2.4	-	-	-	L3
		using POSIX standard																

2	15CS744.3	Understand file structure in UNIX operating system.	2.4	2.4			-	-	-	-	-	-	-	2.4	-	-	-	L4
2	15CS744.4	Apply file manipulation system calls for different types of files.	2.4	2.4	2		-	-	-	-	-	-	-	2.4	-	-	-	L4
3	15CS744.5	Analyze process control primitives for different applications in multiuser environment	2.4	2.4	2	0.6	-	-	-	-	-	-	-	2.4	-	-	-	L4
3	15CS744.6	Identify relationship between group of processes for job control	2.4	2.4	2	0.6	-	-	-	-	-	-	-	2.4	-	-	-	L4
4	15CS744.7	Apply interrupt methods for handling asynchronous events	2.4	2.4	2		-	-	-	-	-	-	-	2.4	-	I	-	L4
4	15CS744.8	Understand daemon characteristics for coding rules	2.4	2.4	2		-	-	-	-	-	-	-	2.4	-	-	-	L4
5	15CS744.9	Distinguish message queues semaphores & shared memory across machine boundaries	2.4	2.4	2	0.6	-	-	-	-	-	-	-	2.4	-	-	-	L4
5	15CS744.10	Discover communication between client server using pipes & sockets	2.4	2.4	2		-	-	-	-	-	-	-	2.4	-	I	-	L4
-	15CS744	Average attainment (1, 2, or 3)	2.4	2.4	2	0.6	-	-	-	-	-	-	-	2.4	-	I	-	L2- L4
-	PO, PSO	1.Engineering Knowledge; 2.Probl 4.Conduct Investigations of Compl Society; 7.Environment and Su 10.Communication; 11.Project N S1.Software Engineering; S2.Data E	lem lex l ustc 1an Base	Ar Prok aina age e Mo	naly oler bilit eme ana	vsis; ns; { ty; ent igen	3.E 5.Mc 8.E an nen	Desi ode thic d t; S	gn rn s; Fir 3.W	/ Foo 9.Ir nand 'eb	Dev L Us ndiv ce; Des	velo sage iduo 12 sign	pm e; 6. al Life	ent The and e-lo	of e En d ng	Sc Igin Tea Le	oluti eer imx earr	ions; and vork; ning;

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1	Unix features &	Classroom	7/8/19	Mrs. Veena M Naik	PO-1,2,3,9
	architecture	Discussion			
2	File locking mechanism	Classroom	11/10/19	Mrs. Veena M Naik	PO-
		Discussion			1,2,3,9,11,12
5	Socket API's	Classroom	7/11/19	Mrs. Veena M Naik	PO-
		Discussion			1,2,3,9,11,12

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod	Gap Topic	Area	Actions Planned	Schedule	Resources	PO Mapping
ules				Planned	Person	
1	Hands on Examples	placement	Planned for	3 rd week of	Mrs. Veena M	
	Programs using		hands on	November	Naik	
	POSIX compile time		session			
	& run time limits					
2	Hands on Examples	placement	Planned for	3 rd week of	Mrs. Veena M	
	Programs using		hands on	November	Naik	
	UNIX & POSIX files		session			
3	Hands on Examples	placement	Planned for	3 rd week of	Mrs. Veena M	
	Programs using		hands on	November	Naik	
	UNIX process API's		session			

4	Hands on Example	placement	Planned for	3 rd week of	Mrs. Veena M	
	Programs using		hands on	November	Naik	
	signals		session			
5	Hands on Example	placement	Planned for	3 rd week of	Mrs. Veena M	
	programs using IPC	-	hands on	November	Naik	
			session			

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.		No. o	f quest		CO	Levels		
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Introduction	08	2	-	-	1	-	2	CO1, CO2	L3,L2
2	UNIX Files and APIs	08	2	-	-	1	-	2	CO3, CO4	L2, L3
3	UNIX Processes and Process	08	-	2	-	1	-	2	CO5, CO6	L4, L4
	Control									
4	Signals and Daemon Processes	08	-	2	-	1	-	2	CO7, C08	L3, L3
5	Interprocess Communication	08	-	-	4	1	-	2	CO9, CO10	L4, L3
-	Total	40	4	4	4	5	-	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	15	CO1, CO2,CO3, CO4	L3,L3,L3,L3
3, 4	CIA Exam – 2	15	CO5CO6, CO7,CO8	L4,L4,L4,L4
5	CIA Exam – 3	15	CO9,CO10	L4,L4
1, 2	Assignment - 1	05	CO1, CO2, CO3,Co4	L3,L3,L3,L3
3, 4	Assignment - 2	05	CO5, CO6, CO7, C08	L4,L4,L4,L4
5	Assignment - 3	05	CO9, CO10	L4,L4
1, 2	Seminar - 1	-	-	-
3, 4	Seminar - 2	-	-	-
5	Seminar - 3	-	-	-
		-		
1, 2	Quiz - 1	-	-	-
3, 4	Quiz - 2	-	-	-
5	Quiz - 3	-	_	-
		-		
1 - 5	Other Activities – UNIT TEST	-	CO9, CO10	L4,L4
	Final CIA Marks	20	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction	Appr Time:	8 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Use runtime & compile time limits in UNIX platform	CO1	L3

2	Understand API characteristics using POSIX standard	CO2	L2
b	Course Schedule	-	-
Class No	Module Content Covered	СО	Level
1	UNIX and ANSI Standards:	CO1	L2
2	The ANSI C Standard, The ANSI/ISO C++ Standards,	CO1	L2
3	Difference between ANSI C and C++	CO1	L2
4	The POSIX Standards, The POSIX.1 FIPS Standard, The X/Open Standards.	CO1	L3
5	UNIX and POSIX APIs:	CO2	L2
6	The POSIX APIs	CO2	L2
7	The UNIX and POSIX Development Environment,	CO2	L2
8	API Common Characteristics	CO2	L2
С	Application Areas	со	Level
1	Implementation of programs to check limits in UNIX operating system	CO1	L3
2	Implementation of programs using test macros in UNIX operating system	CO1	L3
d	Review Questions	-	-
1	Bring out the importance of UNIX operating system.	CO1	L2
2	What is POSIX standard , ANSI C standard , ANSI/ISO C++ standard?	CO1	L2
3	Difference between ANSI C & C++.	CO1	L2
4	Explain the different subsets of posix standard.	CO1	L2
5	API basic concepts.	CO2	L1
6	Define an API?	CO2	L1
7	General API characteristics?	CO2	L2
8	API error names & errno.	CO2	L2
9	What is errno?	CO2	L2
10	Describe the error status codes.	CO2	L1
		CO2	L2
E	Experiences	-	-
1		-	-
2			
3			
4			
5			

Module – 2

Title:	UNIX Files and APIs	Appr	8 Hrs
		Time:	
Α	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand file structure in UNIX operating system.	CO3	L2
2	Apply file manipulation system calls for different types of files.	CO4	L3
В	Course Schedule	-	-
Class No	Module Content Covered	СО	Level
09	File Types, The UNIX and POSIX File System,	CO3	L2
10	The UNIX and POSIX File Attributes, Inodes in UNIX System V,	CO3	L2
11	Application Program Interface to Files, UNIX Kernel Support for Files, Relationship of C Stream Pointers and File Descriptors,	CO3	L2
12	Directory Files, Hard and Symbolic Links.	C03	L2
13	UNIX File APIs: General File APIs,	CO4	L3
14	File and Record Locking, Directory File API	CO4	L3
15	Device File APIs,	CO4	L3
16	FIFO File APIs, Symbolic Link File APIs.	CO4	L3

С	Application Areas	СО	Level
1	Organization of file in the file system of operating system	CO3	L2
2	Applying read and write lock on files.	CO4	L4
D	Review Questions	-	-
11	Define file. List & explain different types of file in UNIX operating system.	CO3	L2
12	Explain the concept of file attributes, inodes along with examples.	CO3	L2
13	When do we use API?	CO3	L2
14	Write the diagram for UNIX kernel support for files .	CO3	L2
15	Compare soft links & hard links.	CO4	L2
16	List and explain general file APIs with prototypes.	CO4	L3
17	Compare read lock & write lock with examples.	CO4	L3
18	What is a directory file API?	CO4	L2
19	Explain the sequence of events that occur when a process calls	CO3	L2
	the close function to close an opened file?		
20	Advantages of locking the file?		
21	Why advisory lock is considered safe?what are the drawbacks of		
	advisory lock?		
22	Explain symbolic link file APIs?		
E	Experiences	-	-
1			
2			
3			
4			
5			

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs 15cs744 Sem: VII		Marks:	30	Time: 75	; minute	S				
Code	e:									
Cour	se:	UNIX SYST	EM PROG	RAMMING						
-	-	Note: Ansv	wer any 2 d	questions, e	ea <mark>ch c</mark> arry eq	ual mar	'ks.	Marks	СО	Level
1	а	What is po	six standaı	d? Explain	the different s	ubset o	f posix standard.	6	CO1	L2
	b	List any 6 e	error status	s code alon	g with its mea	nings		6	CO2	L2
	С	Differentiat	e betweer	n ANSI C an	Id C++			3	CO1	L3
					OR					
2	а	Write a c c limits:	or c++ prog	ram posix	complement	progran	n to check following	g 6	CO1	L3
		i)number o	f clock tick	(S						
			n number (n nath long	of child pro	cesses					
	h		n pain leng	jui oarom to fi	ltor out non r		moliont codes from		CO1	
	d	user progra	am	ogram to n	itter out non-p	JOSIX CO	impliant codes from	1 5	COI	L3
	С	Explain the	e common	characteris	tics of API.			4	CO2	L2
3	а	Describe th	ne UNIX Ke	ernel suppo	ort for files			5	CO3	L2
	b	Explain dire	ectory file	and device	file APIs?			5	CO4	L3
	С	Differentiat	e betweer	n the strean	n pointer and	file desc	criptor?	5	CO3	L2
					OR					
4	а	List the imp	portant use	es of fcntl A	PI. Give its pro	ototype	description	6	CO4	L3
	b	Explain the	e different f	ile types av	ailable in UN	X or PO	SIX system.	5	CO3	L2
	С	Differentiat	e betwee	n soft link 8	k hard link witl	n examp	oles.	4	CO4	L3

b. Assignment -1

	71 015		grintent to	Moc	lel Assianme	nt Question	s			
Crs C	ode [,]	150574/			Marks	E / E	Time [,]	00 - 120	minuto	
Cours	000C.	1303/42			G	575	TITIC.	<i>j</i> 0 120	minute	5
Noto	Note: Each student to answer 2-2 assignments. Each assignment carries equal mark									
SNo					signment De	signmente	ames equal ma	Marke	0	
	, ,	5514	Discuss the	AS a difformación	botwoon AN					
2			W/bat do y		stand by the	torm footu	ro tost macros	2 5	CO1	
2			l ist all the	test macro	s along with i	ts meaning		· 5	001	LZ
2				++ program	to display PC	SIX version	5.	5	CO1	12
			Mention ar	v 5 compil	e time limits			5	CO1	12
5			Differentiat	te hetweer				5	CO1	12
6			W/rite a (C/C++ PO9	SIX complian	t program	to check th	- 5 - 5	CO1	
			following	imits		t program	to check th	5	001	
			a) Number	of child pr	ocesses.					
			b) Maximu	m path len	qth					
			c) Maximui	n path leng	gth					
			d) Maximu	mnumber	of open files p	per process				
7			Write a C/	C++ progra	m to emulate	ln comman	nd in UNIX.	5	CO4	L3
8			Write C or	C++ progra	am to check	the followir	ng compile tim	e 5	CO1	L3
			along with	its minimu	m value.					
			a)supplem	ental group	DS					
			b)maximur	n number (of links of a fil	Э.				
			c)maximur	n number (of simulate no	us asynchr	onous I/O.			
			a)reat sign	als Forcent file to			orating system		<u> </u>	
10			List all the	filo attribut	ypes available	thoir moon	ing	· 5	CO_3	
10					different from	C library fu	ing.	5	CO_3	
12							than calling or	5	CO_3	
12			usor functi	on APLI	s more time	consuming	than calling of	5	03	LZ
12			Differentiat	on. to Cistroam	nointer and	file descrip	tor	5	CO4	12
1/			Differentiat	e symbolic	link and har	link		5	CO_4	
15			W/hich of t	he file attrik	outes can't be	changed a	nd why?	5	CO_4	
16			List the co	mmands ne	eded to char	nae the foll	owing attributes	5	CO3	2
			i) file size			ige the rota	owing attributes	, J	005	
			ii) user ID							
			iii) Last acc	ess & mod	ification time					
			iv) hard linl	< count						
17			What is ir	ode to its	file? Why a	re the inoc	les unique onl	y 5	CO3	L3
			within a fi	le system	? How does	OS map t	he inode to it	s		
			filename?							
18			Explain UN	IIX kernel s	upport for file	with a nea	t diagram.	5	CO3	L2
19			Explain the	following	general file A	Pls		5	CO4	L3
			i)open() ii)fo	cntl() iii)l se	ek					

Note: A distinct assignment to be assigned to each student.

D2. TEACHING PLAN - 2

Module - 3

Title:	Unix processes and process control	Appr	8 Hrs
		Time:	
Α	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Analyze process control primitives for different applications in multiuser	CO5	L4

	environment		
2	Identify relationship between group of processes for job control	CO6	L4
b	Course Schedule		
Class No	Module Content Covered	CO	Level
17	The Environment of a UNIX Process: Introduction, main function, Process Termination, Command-Line Arguments,	CO5	L2
18	Environment List, Memory Layout of a C Program,	CO5	L3
19	Shared Libraries, Memory Allocation, Environment Variables, setjmp and	CO5	L3
20	UNIX Kernel Support for Processes. Process Control: Introduction, Process Identifiers, fork, vfork, exit, wait, waitpid, wait3, wait4 Functions, Race Conditions, exec Functions,	CO5	L4
21	Changing User IDs and Group IDs, Interpreter Files, system Function, Process Accounting, User Identification, Process Times, I/O Redirection.	CO5	L3
22	Process Relationships: Introduction, Terminal Logins, Network Logins,	CO6	L4
23	Process Groups, Sessions, Controlling Terminal, tcgetpgrp and tcgetpgrp Functions,	CO6	L3
24	Job Control, Shell Execution of Programs, Orphaned Process Groups.	CO6	L4
С	Application Areas	СО	Level
1	Create, resume, suspend & kill the process in multitasking environment.	CO5	L4
2	Switching among multiple jobs in multiuser & multitasking environment.	CO6	L4
d	Review Questions	-	-
23	Explain the following system calls: i)fork ii)vfork iii)exit iv)wait.	CO5	L4
24	Giving the prototype explain different variants of exec system call	CO5	L4
25	What is race condition? Write a program in C/C++ to illustrate a race condition.	CO5	L3
26	How UNIX operating system keeps process accounting?	CO5	L2
27	What is job control? Summarize the job control features with the help of a figure.	CO6	L4
28	With a neat block schematic, explain the terminal login process in BSD Unix. What is a session? Explain how you create a session using appropriate shell commands.	CO6	L4
29	Explain the following:i)wait ii)waitpid	CO5	L3
30	With a neat diagram, explain the memory layout of c program. In which segments are the automatic variables and dynamically created objects are stored?	CO5	L3
31	Write a short note on command-line arguments?	CO5	L2
32	Explain the three functions for memory allocation and alternate memory allocators?	CO5	L3
33	Explain getrlimit and setrlimit functions?	CO5	L3
34	Explain the data structure of parent and child processes after fork?	CO5	L3
е	Experiences	-	-
1			
2			
3			
4			
5			

Module – 4

Title:	Signals and Daemon processes	Appr	8 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level

1	Apply interrupt methods for handling asynchronous events	C07	L3
2	Understand daemon characteristics for coding rules	CO8	L3
b	Course Schedule		
Class No	o Module Content Covered	CO	Level
25	Signals: The UNIX Kernel Support for Signals,signal,	CO7	L3
26	Signal Mask, sigaction,	CO7	L3
27	the SIGCHLD Signal and the waitpid Function,	C07	L3
28	The sigsetjmp and siglongjmp Functions,	CO7	L3
29	Kill, Alarm, Interval Timers, POSIX.lb Timers.	CO7	L3
30	Daemon Processes: Introduction,	CO8	L2
31	Daemon Characteristics, Coding Rules,	CO8	L3
32	Error Logging, Client-Server Model.	CO8	L3
С	Application Areas	СО	Level
1	Communication between program and operating system	CO8	L3
2	Operating system bootstrapping	CO7	L3
d	Review Questions	-	-
35	What is a signal? Discuss any five POSIX defined signals?	CO7	L2
36	What is a daemon? Discuss the basic coding rules.	CO8	L2
37	Explain the terms i)signal ii)signal mask	CO7	L2
38	What are daemon processes? Enlist their characteristics. Also write a	CO8	L3
	program to transform a normal user process into a daemon process.		
	Explain every step in the program.		
39	Briefly explain the kill() API and alarm() API?	CO7	L3
40	List the timer manipulation APIs in POSIX.1b	CO7	L3
42	Discuss daemon characteristics?	CO8	L2
42	Explain the coding rules for daemon process.	CO8	L2
43	What is error logging?with a neat block schematic discuss the error login facility in BSD.	CO8	L2
44	Explain the sigaction() function by giving the prototype and discuss its features?	C07	L2
45	Briefly explain SIGCHLD Signal and the waitpid API?	CO7	L3
е	Experiences	-	-
1			
2			
3			
4			
5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs		C15CS744	Sem:	VII	Marks:	20		Time:	75	minutes		
Code	e:											
Cou	Course: UNIX SYSTEM PROGRAMMING											
-	-	Note: Answ	ote: Answer any 2 questions, each carry equal marks. Marks CO Level									Level
1	a	Describe th	Describe the UNIX Kernel support for process. Show the related data						6	CO5	L3	
		structures.	structures.									
	b	What is rad	ce condit	ion? Write	a program i	n C/C++	to ill	ustrate a i	ace	5	CO5	L3
		condition.										
	С	Explain the	following	:						4	CO6	L3
		I) network l	network login ii) terminal login									

		OR			
2	а	What are the different ways in which a process can terminate? With a neat block schematic, explain how a process is launched and terminates clearly indicating the role of C-startup routine and the exit handlers.	8	CO5	L4
	b	What is job control? Summarize the job control features with the help of a figure.	7	CO6	L3
		OR			
3	a	What is a signal? Discuss any five POSIX defined signals?	5	CO7	L2
	b	What is a daemon? Discuss the basic coding rules.	5	CO8	L2
	С	Briefly explain SIGCHLD Signal and the waitpid API?	5	CO7	L3
4	a	What are daemon processes? Enlist their characteristics.	6	CO8	L2
	b	Explain the sigaction() function by giving the prototype and discuss its features?	5	C07	L3
	С	Discuss daemon characteristics?	4	CO8	L2

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions										
Crs C	ode:	15CS744	Sem:	VII	Marks:	5/5	Time:	90 - 120	minute	S
Cours	se:	UNIX SY	STEM PRO	OGRAMMIN	١G					
Note:	Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.									
SNo		USN		A	ssignment De	scription		Marks	со	Level
1			What is a :	signal? Dis	cuss any five F	POSIX define	ed signals?	6	CO7	L2
2			What is a	daemon? [Discuss the ba	sic coding r	ules.	5	CO8	L2
3			Explain the	e terms i)si	ignal ii)signal n	nask		6	CO7	L3
4			What are (daemon pi	rocesses? Enli	st their char	acteristics. Also	2 8	CO8	L3
			write a pro	ogram to tr	ansform a nor	mal user pr	ocess into a			
			daemon p	rocess. Ex	plain every ste	ep in the pro	ogram.			
5			Explain the discuss its	e sigaction features?	() function by g	giving the p	rototype and	5	C07	L3
6			Briefly exp	plain the ki	ll() API and ala	rm() API?		6	CO7	L3
7			List the tin	ner manipı	ulation APIs in	POSIX.1b		6	CO7	L3
8	8 What is error logging?with a neat block schematic discuss the error login facility in BSD.					e 7	CO8	L2		
9	9 Briefly explain SIGCHLD Signal and the waitpid API?				6	CO7	L3			
10			Discuss da	aemon cha	aracteristics?			3	CO8	L2
11			With an e> functions	kample exp	olain the use o	f setjmp an	d longjmp	6	CO5	L3
12			Describe t related da	he UNIX K ta structur	ernel support es	for process.	. Show the	8	CO5	L2
13			Bring out I drawback	the importa of advisor	ance of locking y lock? Explair	g files. What 1 in brief.	t is the	8	CO6	L3
14			Explain the	e following	g system calls:	i)fork ii)vfor	k iii)exit iv)wait.	9	CO5	L4
15			What is jo the help o	b control? f a figure.	Summarize th	e job contro	ol features with	7	CO6	L3
16			How UNIX	(operating	system keeps	s process ac	ccounting?	5	CO5	L3
17			What is ra a race cor	ce condition.	on? Write a pro	ogram in C/	C++ to illustrate	e 6	CO5	L3
18			Giving the	prototype	explain differe	ent variant c	of exec system	6	CO5	L4

D3. TEACHING PLAN - 3

Module – 5

Title:	Interprocess communication	Appr	8 Hrs
		Time:	

a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Distinguish message queues semaphores & shared memory across machine boundaries	CO9	L4
2	Discover communication between client server using pipes & sockets	CO10	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
33	Overview of IPC Methods, Pipes, popen,	CO9	L3
34	pclose Functions, ,Coprocesses,	CO9	L3
35	FIFOs, System V IPC, Message Queues	COg	L4
36	Semaphores Shared Memory,	CO9	L4
37	Client-Server Properties,	CO10	L2
38	Stream Pipes, Passing File Descriptors,	CO10	L3
39	An Open Server-Version 1	CO10	L3
40	Client-Server Connection Functions	CO10	L3
С	Application Areas	CO	Level
1	Client server communication in distributed computing	CO10	L4
2	Remote procedure calls, web, mail severs.	CO9	L3
d	Review Questions	-	-
46	What are pipes? Write C++ program to send data from parent to child over a pipe.	CO9	L3
47	Write a program to implement popen and pclose system calls	CO9	L3
48	Explain the concept of shared memory with an example C/C++ program.	CO9	L3
49	Explain timing comparison of semaphores versus record locking?	CO9	L4
50	Explain the concept of shared memory with an example C/C++ program.	CO9	L3
51	Explain passing file descriptors over STRAMS-based pipes?	CO9	L3
52	What is a STREAMS-Based pipe?	CO10	L2
53	Explain how to setup connld to make unique connections?	CO10	L3
54	What is a socket? Discuss how to it create and destroy a socket?	CO10	L3
P	Fxperiences	_	_
1			
2			
3			
4			
5			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs	15CS744 Sem: VII Marks: 30 Time:						Time:	75 minutes					
Code	e:												
Cou	rse:	Unix syster	Jnix system programming										
-	-	Note: Answ	/er any 2	questions,	each carry ea	qual mar	ʻks.	Marks	СО	Level			
1	а	What are p sends "hel child on re output.	What are pipes? What are their limitations? Write a c program that sends "hello world" message to the child process through the pipe. The child on receiving this message should display it on the standard output.										
	b	What is a S	TREAMS-	Based pipe	? ?			5	CO10	L2			
	С	Discuss the	applicati	ons of FIFC).			4	CO9	L2			
					OR								
2	a	Explain diffe	erent APIs	s used with	message que	eues?		5	CO9	L4			
	b	b What do you mean by passing file descriptors between processes? Explain.					5	CO10	L2				
	С	What is a socket? Discuss how it create and destroy a socket?						5	CO10	L3			

3	а	Explain the concept of shared memory with an example C/C++ program	7	CO9	L3
	b	Explain how to setup connld to make unique connections?	5	CO10	L4
	С	What are semaphores. What is their purpose.	3	CO9	L
		OR			
4	а	Explain the different client server connections functions with examples	8	CO10	L3
	b	Explain passing file descriptors over STRAMS-based pipes?	7	CO9	L3

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions											
Crs C	ode:	15CS744	Sem:	VII	Marks:	5/5	Time:	90 - 120	minute	S	
Cours	se:	UNIX SY	STEM PR	ROGRAMMING							
Note:	Each	student	to answe	r 2-3 assignme	ents. Each a	ssignment o	carries equal m	ark.			
SNo	l	USN		Assi	gnment De	scription		Marks	СО	Level	
1			With a n	eat block sche	ematic, expl	lain how FIF	O can be	6	CO9	L2	
			used to implement client-server communication model.								
2			What ar	e the three diff	erent ways	in which th	e client and	9	CO9	L4	
			server p	rocesses are c	an get acce	ess to same	IPC				
			structure	es? List the AP	Is with their	r argument o	details that				
			are used	d to create, cor	ntrol, send a	and receive	messages				
			W/bat are	nessage queue	JV/batic th		lictand	7	<u> </u>	14	
3			evolain t	ho ΔPls usod to	o create an	d control th	semanhores	/	COg	L4	
1			W/hat are	the different s	system call	a controt the	o create	6	<u> </u>	12	
4			and manipulate semaphores? Explain.						cog	L3	
5			What are	the limitations	s of pipes.			4	COg	L2	
6			What are	the different s	system calls	s available t	o create and	6	COg	L3	
			manipulate semaphores?Explain.								
7			Write a short note on message queues?						CO9	L2	
8			Explain d	lifferent APIs u	sed with m	essage que	ues?	5	CO9	L2	
9			Discuss t	he application	s of FIFO			4	CO9	L2	
10			What are	e the advantage	es and disa	dvantages o	of IPC?	6	CO9	L2	
11			What are	pipes? What a	are their lim	nitations? W	rite a c	8	CO9	L3	
			program	that sends "he	ello world" r	nessage to	the child				
			process i messade	nrougn the pip	y it on the s	a on receivi	ng this tout				
12			With a ne	at block sche	matic expla	ain how FIF() can he	8	C00	12	
12			used to i	mplement clie	nt-server co	ommunicati	on model.		cog	L-3	
13	13 Write a short notes on client sever properties.					5	CO10	L2			
14	14 What do you mean by passing file descriptors between					6	CO10	L3			
processes?											
15 What is a STREAMS-Based pipe?						6	CO10	L3			
16			Explain o	open server,ve	rsion 1?			5	CO10	L2	

F. EXAM PREPARATION

1. University Model Question Paper

Cou	Course: Unix system programming Month /							∕ Year	Dec /2	2019
Crs Code: 15CS744 Sem: VII Marks: 80 Time:						180 minute				
-	- Note Answer all FIVE full questions. All questions carry equal marks.							Marks	СО	Level
1	a	Write a c++ pro	Write a c++ program to list the actual values of the following system							L3
		configuration li	mits on a give	en UNIX OS.						
		 Maximum no. of child processes that can be created. 								
	ii) Maximum no. of files that can be opened simultaneously.									

		iii) Maximum no. of message gueues that can be accessed.			
	b	Write C++ program to display POSIX VERSION.	3	CO1	L3
	С	List any six values of the global variable errno along with their meanings.	6	CO2	L2
	-		-		
		OR			
-	а	List the differences between ANSI C and K & R Explain	6	CO1	L2
	b	Write a c++ program to list the actual values of the following system	7	CO1	L3
		configuration limits on a given unix OS.			
		i)Maximum no. of child processes that can be created.			
		ii)Maximum no. of files that can be opened simultaneously.			
		III/Maximum no. of message queues that can be accessed.		CO1	10
	C		3		LZ
2	а	Explain the different file types available in UNIX or POSIX system.	5	CO3	L2
	b	Describe the UNIX Kernel support for files with neat diagram.	6	CO3	L2
	С	Explain directory file and device file APIs?	5	CO4	L3
		OR			
-	а	What are APIs? When do you use them? Why are the API more time	5	CO4	L3
		consuming than the library function?			
	b	List all the file attributes along with their meanings. Which of these	7	CO3	L2
		attributes can t be changed and why? List the commands needed to			
		change the following file attributes. i) file size;ii) User ID; iii) Last			
		access and modification time; iv) hard link count.			
	С	Write a program to implement ls –l command	4	CO4	L3
3	а	Write an explanatory note on environment variables. Also write a C/C++ program that outputs the contents of its environment list.	5	CO5	L4
	b	Describe the UNIX Kernel support for process. Show the related data structures	6	CO5	L2
	С	What is race condition? Mention & explain routines to avoid race condition.	5	CO5	L3
		OR			
-	a	With a neat block schematic, explain the terminal login/network login process in BSD Unix. What is a session? Explain how you create a session using appropriate shell commands.	6	CO6	L2
	b	Explain how the shells execute programs?	4	CO6	L2
	С	Explain the following system calls: i)fork ii)vfork iii)exit iv)wait	6	CO5	L4
4	a	What is a signal? Discuss any five POSIX defined signals?	6	C07	L2
	b	Explain the terms i)signal ii)signal mask	2	CO7	L2
	С	What are daemon processes? Enlist their characteristics. Also write a	8	CO8	L3
		program to transform a normal user process into a daemon process.			
		Explain every step in the program.			
		OR			
-	а	What is error logging?with a neat block schematic discuss the error login	7	C08	L2
		facility in BSD.			
	b	Briefly explain the kill() API and alarm() API?	4	C07	L3
	С	Mention the different sources of signals. Write a program to setup signals	5	CO7	L2
		handlers for SIGINT & SIGACRAM signals.			
5	а	What are pipes? What are their limitations? Write a C/C++ program that	8	CO9	L3
		sends "hello world" message to the child process through the pipe. The			
		child on receiving this message should display it on the standard output.			
	b	Explain STREAMS-Based pipe?	5	CO10	L2

С	Define the following:	3	CO9	L1
	I) semaphores ii) message queues iii) shared memory			
	OR			
a	Which is the fastest form of IPC? Explain.	5	CO9	L4
b	Explain client server communication using FIFO with neat diagram.	6	CO10	L3
С	Briefly explain the client server functions.	5	CO10	L3

2. SEE Important Questions

Course:		Unix system programming Mont	Month / Yeaı		2019
Crs (Code:	15Cs744 Sem: VII Marks: 80 Time	:	180 m	nutes
	Note	Answer all FIVE full questions. All questions carry equal marks.	-	-	
Mo	Qno.	Important Question	Marks	CO	Year
dul					
1	1	Bring out the importance of standardizing the LINIX operating system	8	CO1	2000
	1	List the differences between ANSI C and K & R C.			2009
	2	List all the five feature test macros along with their meanings.	6	CO1	2009
	3	What are the API common characteristics? List any six values of t	ne 10	CO2	2016
		global variable errno along with their meanings.			
	4	Explain POSIX standards with different subsets of POSIX. Write C	;++ 8	CO1	2017
	5	Write a c++ program to list the actual values of the following system	7	CO1	2017
		configuration limits on a given UNIX OS.			
		I) Maximum no. of child processes that can be created.			
		ii) Maximum no. of files that can be opened simultaneously.			
	6	III) Maximum no. of message queues that can be accessed.		CO1	2017
	0	while structure of program to filter out non-posix compliant codes from	5	001	201/
2	1	Explain the commands to create different file types supported by UNIX.	6	CO3	2016
	2	Explain UNIX kernel support for files with neat diagram.	8	CO3	2016
	3	Explain explain the prototype of the following APIs	8	CO3	2018
		i) open ii) lseek iii) fsat iv) chmod			
	4	What is the advantage of locking files? Explain mandatory & adviso	ry 7	CO4	2017
		locks? Why advisory lock is considered safe? What are the drawbacks	of		
		advisory lock?		CO 1	2016
	5	Explain symbolic link file APIS?	8	004	2016
2	1	Write an explanatory note on environment variables. Also write a	6	COF	2000
3	1	C/C^{++} program that Outputs the contents of its environment list.		005	2009
	2	What is race condition? Write a program for generating race condition?	8	CO5	2016
	3	Explain in detail the family of exec functions.	12	CO5	2016
	4	Explain the memory layout of C program with neat diagram?	7	CO5	2018
	5	Explain fork and vfork system calls. How fork call differs from vfor	k? 10	CO5	2017
<u> </u>		Write program to demonstrate fork & vfork system calls.		0.000	
	6	What is job control? What are the three forms of support from operation	ng 4	CO6	2017
		system required for Job Control			
	1	What is signal? Discuss any five POSIX defined signals. Explain how to s	et 10	C07	2017
4	L 1	up a signal handler.			
	2	Explain program how to setup a signal handler.	6	CO7	2017
	3	Write C/C++ program to show the use of alarm.	6	CO7	2016
	4	What is daemon process? Explain daemon characteristics & relation	to 10	C08	2016
		session & process groups.			
	5	Explain coding coding rules for daemon process?	5	C08	2016
5	1	What are three different ways in which client sever process can g	et 10	CO9	2018

	access to same IPC structure? Explain different prototype of APIs that			
	support these structure			
2	What is FIFO? Explain how it is used in IPC. Discuss with an example, the	10	CO9	2017
	client server communication using FIFOs.			
3	What are pipes? Write a C++ program to send data from parent to child	10	CO9	2016
	over a pipe.			
4	Briefly explain client server functions.	6	CO10	2016
5	What are stream pipes? Explain passing file descriptors.	7	CO10	2015
6	What is a socket. Describe the socket API.	5	CO10	20

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA - 15CS744

Мо	Course Content or Syllabus	Conten	Blooms'	Final	Identified	Instructi	Assessment
dul	(Split module content into 2 parts which have	t	Learning	Bloo	Action	on	Methods to
e-	similar concepts)	Teachi	Levels	ms'	Verbs for	Methods	Measure
#	·	ng	for	Leve	Learning	for	Learning
		Hours	Content	l		Learning	
Α	В	С	D	Ε	F	G	Н
1	The ANSI C Standard, The ANSI/ISO C++	05	- L1	L3	understan	Demons	Student
	Standards, Difference between ANSI C and C+		- L2		d	trate	presentatio
	+,The POSIX Standards,The POSIX.1 FIPS		-L3		Demonstr	program	n of
	Standard, The X/Open Standards.				ate	S	programs
1	UNIX and POSIX APIS The POSIX APIS, The	03	- L1	L2	understan	Demons	Student
	UNIX and PUSIX Development Environment,		- L2		a	trate	presentatio
	API Common Characteristics					program	
-	Eilo Typos The LINIX and DOSIX Eilo	0.1	11	12	Undorsta	5 Dooding	Programs
2	System LINIX and POSIX File Attributes	04	- LI - 1 2	LZ	nd	discussi	answors
	Inodes in LINIX System V Application				na	on	Quiz
	Program Interface to Files UNIX Kernel					Hands	Guiz
	Support for Files.Relationship of C Stream					on	
	Pointers and File Descriptors, Directory Files,					sessions	
	Hard and Symbolic Links.						
2	General File APIs, File and Record Locking,	04	- L1	L3	Understa	Reading,	Student
	Directory File APIs, Device File APIs, FIFO File		- L2		nd	discussi	presentatio
	APIs, Symbolic Link File APIs.		-L3		Demonstr	on	n of
					ate	Hands	programs
						on .	
			1.	1.	A	sessions	
3	Introduction, main function, Process	05	- L1	L4	Apply	Presenta	Question
	Arguments Environment List Memory Layout				Anatyze	Hands	anu
	of a C Program Shared Libraries Memory		-∟3 -L⊿			on	answers
	Allocation Environment Variables setimo					sessions	assignment
	and longimp Functions, getrlimit, setrlimit					505510115	
	Functions.UNIX Kernel Support for						
	Processes.Process Identifiers, fork, vfork, exit,						
	wait, waitpid, wait3, wait4 Functions, Race						
	Conditions, exec Functions, Changing User						
	IDs and GroupProcess Accounting, User						
	Identification, Process Times, I/O Redirection.						
3	Introduction, Terminal Logins, Network	03	- L2	L4		Presenta	Question
	Logins, Process Groups, Sessions, Controlling		- L3		Understa	tion	and
	I erminal, tcgetpgrp and tcsetpgrp Functions,				nd	Hands	answers
	Job Control, Shell Execution of Programs,				Impleme	on	assignment
	Orpnaned Process Groups.				nt	sessions	

4	Introduction, Daemon Characteristics, Coding Rules,error Logging, Client-Server Model.The UNIX Kernel Support for signal, Signal Mask, sigaction, The SIGCHLD Signal and the waitpid Function,The sigsetjmp and siglongjmp Functions, Kill, Alarm, Interval Timers, POSIX.lbTimers.	05	- L2 - L3 -	L3	Apply	Demons trate program s Hands on sessions	Student presentatio n Quiz
4	Daemon Characteristics, Coding Rules,error Logging, Client-Server Model.	03	- L2 - L3	L3	Apply	Demons trate program s Hands on sessions	Student presentatio n Quiz
5	Overview of IPC Methods, Pipes, popen, pclose Functions, Co processes ,FIFOs, System V IPC, Message Queues, Semaphores. Shared Memory	04	- L2 - L3 -L4	L4	Apply Examine	Demons trate program s Hands on sessions	Student presentatio n of programs Quiz
5	Client-Server Properties, Stream Pipes, Passing File Descriptors, An Open Server- Version 1, Client-Server Connection Functions.	04	- L2 - L3	L3	Apply	Demons trate program s Hands on sessions	Student presentatio n of programs Quiz

2. Concepts and Outcomes:

Table 2: Concept to Outcome – 15CS744

140		I do atificad	Einel Componet	Concernt		
	Learning or	Identified	Final Concept	Concept	CO Components	Course Oulcome
aui	Outcome	Concepts		Justification	(1.Action Verb,	
e-	from study of	from		(What all Learning	2.Knowledge,	
#	the Content	Content		Happened from the	3.Condition /	Student Should be
	or Syllabus			study of Content /	Methodology,	able to
				Syllabus. A short	4.Benchmark)	
				word for learning or		
				outcome)		
Α	1	J	K	L	M	N
1	-UNIX & ANSI	-POSIX	POSIX	Implement simple	Demonstrate	Use runtime &
	standards	standards	standards	programs using	compile time & run	compile time limits
	- ANSI C	-ANSI		POSIX runtime &	time limits	in UNIX platform
	standards	standards		compile time limits	UNIX operating	
	-ANSI/ISO C+			•	system	
	+ standards					
	-POSIX.1 FIPS					
	standard					
	-POSIX					
	standard					
1	-POSIX API's	-API	API	Understand API	Understand	Understand API
1 ⁻	-API common	characteri	characteristic	characteristics		characteristics using
	charactoristic	stics	characteristic	Characteristics		DOSIX standard
	characteristic	51105	5		ctandards	
	5				stanuarus	
2	-file types	-files	Kernel	Understand kernel	Understand	Understand file
	- UNIX file	-file	support for	support for files in	file API's	structure in UNIX

	system - file attributes -inodes in unix system -API to files -kernel support for files	attributes -inodes in kernel -file API's	files	unix operating system	POSIX standard	operating system.
2	-General file API's -file & record locking -hard link & soft link	-file API's I -file locks	API for file	Application program interface for files	Demonstrate Different file API's Unix operating system POSIX standard	Apply file manipulation system calls for different types of files.
3	-unix process environment -main processes -process termination -memory layout of C program -kernel support for process	-unix processes -process control	Process management	Analyze different process control API"s	Analyze process control API's UNIX environment	Analyze process control primitives for different applications in multiuser environment
3	-terminal login -network login -process groups -session -job control	-process relationshi ps	Process relationship	Analyze the relationship between process	Analyze process relationships UNIX environment	Identify relationship between group of processes for job control
4	-unix kernel support for signals -signal mask - sigaction -kill -alarm	-signals -kernel support for handling signals	Signal handling techniques	Apply different signal handling API's to handle signals	Apply signal API's UNIX environment	Apply interrupt methods for handling asynchronous events
4	-Daemon characteristic s -coding rules -error logging -client server model	-daemon characteri stics	Daemon characteristic s	Understand daemon characteristics	Understand characteristics UNIX environment	Understand daemon characteristics for coding rules
5	-IPC methods -pipes -popen -pclose -co processes	-IPC methods -co processes	IPC mechanisms	Inter processes communication techniques	Distinguish IPC mechanism UNIX environment	Distinguish message queues semaphores & shared memory across machine
	-client server	-client	Client server	Client server	Discover	Discover

properties	server	communicati	communication	client server	communication
-stream pipes	communi	on	API's	communication	between client
-client server	cation			UNIX environment	server using pipes &
connection					sockets
function					